Epigenetic reprogramming: preparing the epigenome for the next generation.
نویسندگان
چکیده
Epigenetic reprogramming of germ cells involves the genome-wide erasure and subsequent re-establishment of DNA methylation, along with reprogramming of histone modification profiles and the eventual incorporation of histone variants. These linked processes appear to be key for the establishment of the correct epigenetic regulation of this cell lineage. Mouse studies indicate that DNA demethylation may be initiated at E (embryonic day) 8 with rapid and substantial erasure occurring between E11.5 and E12.5. This is accompanied by a reduction in H3K9 dimethylation and an increase in H3K27 trimethylation. DNA remethylation subsequently occurs in late gestation in male germ cells and postnatally in female germ cells. This reprogramming occurs throughout the genome, with the exception of specific sequences. The conservation of this process across species remains largely undetermined, and, with recent discoveries of new DNA modifications, there is still much to be explored.
منابع مشابه
Induced pluripotent stem cell technology for dissecting the cancer epigenome
Cancer arises through the accumulation of both genetic and epigenetic alterations. Although the causal role of genetic mutations on cancer development has been established in vivo, similar evidence for epigenetic alterations is limited. Moreover, mutual interactions between genetic mutations and epigenetic alterations remain unclear. Cellular reprogramming technology can be used to actively mod...
متن کاملI-19: Identifying and Overcoming an Epigenetic Barrier for SCNT Reprogramming
Background Despite successful cloning of many mammalian species, the cloning efficiency is extremely low compared to that of IVF raising the possibility of the existence of epigenetic barrier preventing successful cloning. MaterialsAndMethods Using comparative transcriptome analysis comparing transcriptomes of IVF and SCNT embryos and that of donor cells, we identified epigenetic barrier and fi...
متن کاملThe Role of Epigenetics in Cancer Drug Resistance
Cancer is caused by aberrant genetic and epigenetic changes in genes expression. DNA methylation, histone modification, and microRNAs gene deregulation are the most known epigenetic changes in different stages of cancer. Since every tumor has its own specific epigenome, any abnormal pattern is a potential biomarker for classification of different types of tumors. Despite, tumorigenesis, abnorma...
متن کاملMolecular pathways: environmental estrogens activate nongenomic signaling to developmentally reprogram the epigenome.
Exposure to environmental xenoestrogens is a major health concern because of the ability of these compounds to perturb estrogen receptor (ER) signaling and act as endocrine disrupting compounds (EDC). Inappropriate exposure to EDCs during development, even at low doses, can predispose individuals to an increased lifetime risk of disease, including cancer. Recent data indicate that perinatal exp...
متن کاملEnvironmentally Induced Transgenerational Epigenetic Reprogramming of Primordial Germ Cells and the Subsequent Germ Line
A number of environmental factors (e.g. toxicants) have been shown to promote the epigenetic transgenerational inheritance of disease and phenotypic variation. Transgenerational inheritance requires the germline transmission of altered epigenetic information between generations in the absence of direct environmental exposures. The primary periods for epigenetic programming of the germ line are ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Biochemical Society transactions
دوره 41 3 شماره
صفحات -
تاریخ انتشار 2013